Nowadays artificial intelligence is a rapidly developing technology that encompasses the development of intelligent algorithms and machines capable of learning. Therefore, it is relevant and timely to examine the topic. These artificial intelligence algorithms and machines have the ability to perform tasks that traditionally relied on human intelligence in the past. This study provides an in-depth exploration of artificial intelligence systems and their key components. It examines various aspects of artificial intelligence systems, including natural language processing, machine learning, detection and pattern recognition, and knowledge representation and other form of artificial intelligence systems. Natural language processing enables machines to understand and generate human language, while machine learning empowers systems to learn from data and improve their performance over time. Detection and pattern recognition allow artificial intelligence systems to interpret and understand complex sensory inputs, while knowledge representation enables the storage and utilization of information. Furthermore, other form of artificial intelligence systems will be also discussed. This study sheds light on the fundamental elements of artificial intelligence systems, paving the way for their practical applications and advancements.
Beck, M., & Libert, B. (2017). The rise of AI makes emotional intelligence more important. Harvard Business Review, 15, 1-5.
Chowdhary, K. R. (2020). Natural Language Processing. In: Fundamentals of Artificial Intelligence. Springer. https://doi.org/10.1007/978-81-322-3972-7_19
Dietterich, T. G. (1990). Machine Learning. Annual Review of Computer Science, 4(1), 255–306. https://doi.org/10.1146/annurev.cs.04.060190. )
Duan, Y., & Edwards, J. S., & Dwivedi, Y. K. (2019). Artificial intelligence for decision making in the era of Big Data – evolution, challenges and research agenda. International Journal of Information Management, 48, 63–71. https://doi.org/10.1016/j.ijinfomgt
Fennell, R. D., & Lesser, V. R. (1977). Parallelism in Artificial Intelligence Problem Solving: A Case Study of Hearsay II. IEEE Transactions on Computers, C-26(2), 98–111. https://doi.org/10.1109/tc.1977.5009289
Flasiński, M. (2016). Introduction to Artificial Intelligence. Springer. https://doi.org/ 10.1007/978-3-319-40022-8
Forrest, S. (1996). Genetic algorithms. ACM Computing Surveys (CSUR), 28(1), 77-80.
Haenlein, M., & Kaplan, A. (2019). A Brief History of Artificial Intelligence: On the Past, Present, and Future of Artificial Intelligence. California Management Review, 61(4). https://doi.org/10.1177/0008125619864925
Hendershott T., Jones, C. M., & Menkveld, A. J. (2011). Does Algorithmic Trading Improve Liquidity? The Journal of Finance, 66(1), 1–33. https://doi.org/ 10.1111/j.1540-6261.2010.01624.x
Kahneman, D. (2011). Thinking Fast and Slow. Farrar, Straus and Giroux.
Lungarella, M., Iida, F., Bongard, J., & Pfeifer, R. (Eds.). (2007). 50 Years of Artificial Intelligence. Lecture Notes in Computer Science. https://doi.org/10.1007/978-3-540-77296-5
Mahroof, K. (2019). A human-centric perspective exploring the readiness towards smart warehousing: The case of a large retail distribution warehouse. International Journal of Information Management, 45, 176–190. https://doi.org/10.1016/j.ijinfomgt.2018. 11.008.
Négyesi, I. (2017). A mesterséges intelligencia és a hadsereg III. (Beszédfelismerő szoftverek II.), Hadtudományi szemle, 10(4), 142-155.
Parkes, D. C., & Wellman, M. P. (2015). Economic reasoning and artificial intelligence. Science, 349(6245), 267–272. https://doi.org/10.1126/science.aaa8403
Prentice, C., & Lopes D. S., & Xuequn, W. (2019). Emotional intelligence or artificial intelligence– an employee perspective. Journal of Hospitality Marketing & Management, 29(4), 377–403. https://doi.org/10.1080/19368623.2019.1647124
Sharma, L., & Garg, P. K. (2021). Knowledge representation in artificial intelligence: an overview. Artificial intelligence.
Sun-Chong, W. (2003). Artificial Neural Network. In: Interdisciplinary Computing in Java Programming. The Springer International Series in Engineering and Computer Science, vol 743. Springer. https://doi.org/10.1007/978-1-4615-0377-4_5
Werner, G., &, Hanka, L. (2016). „Az Emberi észlelésen Alapuló mesterséges Intelligencia modellezése a személyazonosításban”. Köztes-Európa, 8(1-2), 187-97.
Zadeh, L. A. (1988). Fuzzy logic. Computer, 21(4), 83-93.